OWL ViperJet 50mm and 64mm EDF
( Semi Scale Model )
~ LW-PLA Digital Balsa and Foam Series ~

Videos and Pictures

OWL ViperJet is designed so that it can use either 50mm or 64mm EDF with 4s ranging from 1500mAh to 2200mAh LiPo battery. With 2 types of EDF size options, it is up to you to make it fly faster and powerful with 64mm EDF or with standard power 50mm EDF. For example. you can start with a 50mm EDF and upgrade it later with a more powerful 64mm EDF.

Initially, we were not sure if a model can still fly excellent when powered with 50mm EDF 4s. In the middle of development, we came up with an idea to make the model available to fly not only with 50mm EDF 4s but also 64mm EDF 4s. During the test flying, even with 50mm EDF, it still can fly excellent. If you would like to have a lighter setup, 50mm EDF 4s and 1500mAh 4s LiPo battery would be your best choice. 64mm EDF 4s and 22000mAh 4s LiPo battery would be your best choice when you want more speed. We suggest using QX-Motor 64mm EDF for 4s with 3800kv for having a powerful setup.

Please note, since we push the model to use 64mm EDF size, it is required to remove the intake lip before installing into the fuselage so that the EDF will fit into.  OWL ViperJet can not use 64mm EDF size with fixed intake lip *** will not entertain any request for EDF with fixed intake lip ***.

We continue releasing the model with a “digital balsa and foam” approach. So far, we are very happy to get feedback from some of our customers when slicing the model designed with that approach. The printed parts are much stronger and still keep the weight about the same as digital balsa approach.

To protect from scratches during landing, you may want to use fiber tape (you can find it in details below in this page).

If you are not familiar with launching an EDF jet, we would suggest you use our OWLplane Catapult Launcher (it is human free error from throwing the model). During maiden, also suggest using that launcher to get you familiar first with the model. When you have trimmed aileron and elevator control surfaces already, you will have no worry and no need anymore setting the control surfaces at the same time especially when trying to hand launch the model.

In general, this model must be printed with LW-PLA/ePLA-LW/PolyLight 1.0 filament only (you still may want to experiment printing some parts with PLA * for example printing wings with PLA for having extreme maneuver *). It is not with landing gear model (it is hand launch or catapult launch type of model),

Digital Balsa and Foam Series

Printing Profiles with Gyroid Infill :

As you can see from the pictures below, they illustrate a 3D printed part when using gyroid infill and ribs. You can pick infill percentage to you preferences where the higher you set it will be stronger. To get optimal result, we also still use ribs so that we will achieve parts using optimal gyroid infill percentage. With having gyroid infill, we have tried to use top and bottom layers. The good news is that the AUW is still acceptable for the jet and allow it to use like lego style blocks to assemble.  

We run some research and experiment with some number of setting values for infill percentage. Final values will be used in our OWLplane slicer profiles. Feel free to increase or decrease the values including playing with other settings if you feel better than ours (we are happy listening / getting your input/feedback, so keep us posted about your build in our facebook group). 

*) Below is from F16 part for illustration.

Like Playing Lego :

As explained above, click the right side youtube video showing how to assembly the fuselage like playing “lego” blocks.

Expected Some Stringing but Easy to Clean :

Since active foaming filaments such as LW-PLA is not affected  by retraction, some stringings are expected. The good news is that they are easy to clean compared to printing with standard PLA/PLA+.

Note : sample parts from F16 model.

Sandpaper Cleaning the Excessive Materials Surrounding Plug-In Blocks :

Sanding parts would make assembling much easier and clean. Excessive materials can be found on the top surfaces. For example, the circle in the picture need to sand so that there is no need to push the part later to fit into the next part.

Note : sample parts from F16 model.

Sand The Surfaces To Get Smooth Ones :

Comparing surfaces before and after sending it. LW-PLA material let you smoothing surfaces where it would not be applicable with standard PLA or PLA+.

Specification and Some Details

Spar Requirements :

  • 1 x 6mm OD and with 315mm long fiber carbon tube as front fuselage and wing spar.
  • 1 x 6mm OD and with 315mm long fiber carbon tube as back fuselage and wing spar.
  • 2 x 5mm OD and with 320mm long fiber carbon tube as wing spar.
  • 2 x 5mm OD and with 190mm long for stabilizer spars.

Locking Belt for Attaching Wings to Fuselage :

Aileron/Wing Control Surfaces Rods:

Elevator/Horizontal Stabilizer Control Surfaces Rods:

Electronic Positions :

Feel free to locate the electronics for getting the correct CoG.

50mm and 64mm EDF Bracket and Installation :

Two type of EDF brackets are provided, they are for 50mm type of EDF and 64mm type of EDF. Please note for 64mm EDF that only removable intake lip EDF can use the bracket. STEP file is provided if you want to modify for brands not in the list. It means that fixed intake lip would not be supported only for 64mm EDF. Make sure your EDF are supported by the requirement above since we will not entertain if your EDF can not be installed. Please check if your current EDF can use the provided brackets by printing them. It is free to download by clicking the button below.

In summary *** requirements to use the brackets *** :

1. 50mm EDF – need to keep/to use intake lip. Please hot glue the EDF into the bracket. Since it uses hot glue, it should be easy to remove the EDF later from the bracket using hot water to loose the glue if you would like to reuse the EDF.

2. 64mm EDF – need to remove/take out intake lip. Since it uses hot glue, it should be easy to remove the EDF later from the bracket using hot water to loose the glue if you would like to reuse the EDF.

Please go to “OWL ViperJet 50mm-64mm – SUPPORT ver 1.0\EDF BRACKETS” directory to get EDF brackets for 50mm EDF or 64mm EDF motor.

Below are 50mm and 64mm EDF bracket pictures from the CAD  :

Below some QX-Motor 64mm EDF pictures installed into the fuselage  :

Left side : using hot glue for 50mm EDF.

Right side : using hot glue for 64mm EDFs.  

Special note when gluing 50mm EDF bracket :

Make sure that the 3 cables from EDF about perpendicular with EDF bracket arms as shown by the picture below.

EDF Hatch Support Rods  :

Please insert steel support rods 1.0 – 1.2mm OD into the provided holes to make parts stronger as shown by the pictures below :

Trimming Canopy  :

Center of Gravity (CoG) :

How to Launch OWL ViperJet 50/64mm EDF Model : 

Two methods are suggested to launch the model. The first one is to use OWLplane Catapult Launcher. Please visit OWLplane Catapult Launcher product page menu under “SHOP & PRODUCT LIST” tab after hovering the mouse over (you can use your own Catapult Launcher so that you just need to print the hook adapter). The second one is by hand launching. 

It is recommended to launch the model by utilizing OWLplane Catapult Launcher or your own launcher since it is human free error.

#1 – By Utilizing OWLplane Catapult Launcher.

Watch the following videos how easy it is to launch the rc model with OWLplane Catapult Launcher and human free errors. 

#2 – By Throwing.

Follow the following tips to launch :

– Lean your body backward.

– Put your fingers on designated locations (shown in the following section below).

– Start throwing by also moving your body forward.

Note : Above pictures are illustration only, using 50mm BAE Hawk T1.

Printing and Preparing OWL ViperJet 50mm and 64mm EDF Launcher Adapter :

If you plan to launch the model with your own catapult launcher, please print the parts shown on the right side from  “OWL ViperJet 50mm – SUPPORT ver 1.0\CATAPULT ADAPTER\STL and GCODE” for the puller and need to glue the hook bar “VIPERJET HOOK # GR3” from “OWL ViperJet 50mm-64mm – STL, 3MF and G-code ver 1.0\1. FUSELAGE\STLs” directory.

Feel free to use your own catapult launcher or you can print OWLplane catapult launcher for free.  

Finger Resting for Hand Launching :

If you choose to launch by throwing, please put your fingers as shown in the following pictures.

Optional : Fiber Tape Protecting The Model During Belly Landing 

By using fiber tape attached to the belly skin, it will protect a model during landing from rough surfaces. Not only protecting, you may no need to clean the belly after sometime by replacing it to get back clean.

We have tested it and really happy with the result. The model is still in a good condition after landing it on rough surfaces.

*) Using F16 belly part as illustration only.

Some Note for Slicing STL Files :

Default Value are :

– Retraction : Set enabled only to make “extra restart length = 0.05mm” (PrusaSlicer), “extra restart amount = 0.05mm” (IdeaMaker) or “retraction extra prime amount = 0.5mm^3” (Cura) to compensate loosing materials due to stringing issues.

– Heatbed: 55 degree C.

– Hotend: 245 degree C (you may want to change it between 240 – 250 degree C).

– Extrusion Multiplier : 0.55% (feel free to update this value).

– Extrusion Width: 0.40mm (feel free to find your preference value, but it will be around that value).

– Extrusion Height: 0.25mm (greater is faster but less stronger bonding).

– Printing Speed: 35mm/sec.

– Retraction Speed : 50mm/sec.

Weight and Time Estimation :

Following tables show the weight of printed parts, number of required filament rolls and time required to print. But the number may vary from printer to printer due to:

– Stepper Jerk value.

– Stepper Acceleration value.

– Steps per unit (either calibrated or uncalibrated).

– Extruder quality/condition.

– Nozzle quality/condition.

– Filament quality/condition.

– Etc. 

Here are the summary table (estimation with 64mm EDF setup) :

Klipper Firmware Does Not Accept “#” / Hash Character

Unfortunately the Klipper firmware does not accept the “#” / hash character when naming the file. More and more 3D printers nowadays and upcoming most likely will use the Klipper firmware where when using previous firmware such as Marlin, Prusa, etc. do not prevent it from processing. 

Since our naming convention for our g-code files utilize the “#” character and already since we started the OWLplane, we still keep them until our new release models dated after July 2024 (after BD OWLjet 70mm 6s EDF). 

No worry, to use our g-code files, just need to remove the “#” character, that is it !

Fore example :

FUSELAGE-1 # P3_H15″ replace the file name with “FUSELAGE-1 P3_H15”

Note : no “#” character is used in the new file name.

How To Extract Our Zip Files 

Somehow when the folder path is too long,  files and directories can not be extracted directly to a destination directory. There is a workaround for this, just follow the guide below. What you need to follow is to double click zip file until you find the directory. From there, double right click to invoke a “copy” command. After that, just paste the directory into your destination directory. That is it ! 

Table of Contents

Update History

None.

Recommended Setup

Tools and Materials

Hardware Needed

For Fuselage and Canopy:

For Aileron and Elevator Servos:

*) Illustration only

Setup for Servo Travel/Throw

Suggested setup for medium travel/thrown are depicted below and you may adjust the setup according to your need.

Please pay attention to start and end measurement location. 

Assembly Figures

OWL ViperJet 50/64mm Fuselage Assembly

OWL ViperJet 50/64mm Wings Assembly

OWL ViperJet 50/64mm Stabilizer Assembly

OWL ViperJet 50/64mm Canopy Assembly

Watch OWL ViperJet - 50/64mm
Animation and Assembly Video
Please visit the page for having visual learning